Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
2.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077801

RESUMO

Background: The pancreatic ductal adenocarcinoma (PDAC) microenvironment is highly fibrotic and hypoxic, with poor immune cell infiltration. Recently, we showed that nucleolin (NCL) inhibition normalizes tumour vessels and impairs PDAC growth. Methods: Immunocompetent mouse models of PDAC were treated by the pseudopeptide N6L, which selectively inhibits NCL. Tumour-infiltrating immune cells and changes in the tumour microenvironment were analysed. Results: N6L reduced the proportion of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and increased tumour-infiltrated T lymphocytes (TILs) with an activated phenotype. Low-dose anti-VEGFR2 treatment normalized PDAC vessels but did not modulate the immune suppressive microenvironment. RNAseq analysis of N6L-treated PDAC tumours revealed a reduction of cancer-associated fibroblast (CAF) expansion in vivo and in vitro. Notably, N6L treatment decreased IL-6 levels both in tumour tissues and in serum. Treating mPDAC by an antibody blocking IL-6 reduced the proportion of Tregs and MDSCs and increased the amount of TILs, thus mimicking the effects of N6L. Conclusions: These results demonstrate that NCL inhibition blocks the amplification of lymphoid and myeloid immunosuppressive cells and promotes T cell activation in PDAC through a new mechanism of action dependent on the direct inhibition of the tumoral stroma.

3.
Biomacromolecules ; 23(6): 2302-2314, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549176

RESUMO

Nucleolin is a multifunctional protein involved in essential biological processes. To precisely localize it and unravel its different roles in cells, fluorescence imaging is a powerful tool, especially super-resolution techniques. Here, we developed polymer-aptamer probes, both small and bright, adapted to direct stochastic optical reconstruction microscopy (dSTORM). Well-defined fluorescent polymer chains bearing fluorophores (AlexaFluor647) and a reactive end group were prepared via RAFT polymerization. The reactive end-group was then used for the oriented conjugation with AS1411, a DNA aptamer that recognizes nucleolin with high affinity. Conjugation via strain-promoted alkyne/azide click chemistry (SPAAC) between dibenzylcyclooctyne-ended fluorescent polymer chains and 3'-azido-functionalized nucleic acids proved to be the most efficient approach. In vitro and in cellulo evaluations demonstrated that selective recognition for nucleolin was retained. Their brightness and small size make these polymer-aptamer probes an appealing alternative to immunofluorescence, especially for super-resolution (10-20 nm) nanoscopy. dSTORM imaging demonstrated the ability of our fluorescent polymer-aptamer probe to provide selective and super-resolved detection of cell surface nucleolin.


Assuntos
Aptâmeros de Nucleotídeos , Alcinos , Compostos de Benzil , Corantes Fluorescentes , Microscopia , Oligodesoxirribonucleotídeos , Imagem Óptica , Fosfoproteínas , Polímeros , Proteínas de Ligação a RNA
4.
Nat Commun ; 13(1): 173, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013311

RESUMO

Mechanisms of drug-tolerance remain poorly understood and have been linked to genomic but also to non-genomic processes. 5-fluorouracil (5-FU), the most widely used chemotherapy in oncology is associated with resistance. While prescribed as an inhibitor of DNA replication, 5-FU alters all RNA pathways. Here, we show that 5-FU treatment leads to the production of fluorinated ribosomes exhibiting altered translational activities. 5-FU is incorporated into ribosomal RNAs of mature ribosomes in cancer cell lines, colorectal xenografts, and human tumors. Fluorinated ribosomes appear to be functional, yet, they display a selective translational activity towards mRNAs depending on the nature of their 5'-untranslated region. As a result, we find that sustained translation of IGF-1R mRNA, which encodes one of the most potent cell survival effectors, promotes the survival of 5-FU-treated colorectal cancer cells. Altogether, our results demonstrate that "man-made" fluorinated ribosomes favor the drug-tolerant cellular phenotype by promoting translation of survival genes.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , DNA de Neoplasias/genética , Tolerância a Medicamentos/genética , Fluoruracila/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Receptor IGF Tipo 1/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Replicação do DNA , DNA de Neoplasias/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Células HCT116 , Halogenação , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Receptor IGF Tipo 1/agonistas , Receptor IGF Tipo 1/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/genética , Ribossomos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancers (Basel) ; 13(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34638443

RESUMO

We previously showed that N6L, a pseudopeptide that targets nucleolin, impairs pancreatic ductal adenocarcinoma (PDAC) growth and normalizes tumor vessels in animal models. In this study, we analyzed the translatome of PDAC cells treated with N6L to identify the pathways that were either repressed or activated. We observed a strong decrease in global protein synthesis. However, about 6% of the mRNAs were enriched in the polysomes. We identified a 5'TOP motif in many of these mRNAs and demonstrated that a chimeric RNA bearing a 5'TOP motif was up-regulated by N6L. We demonstrated that N6L activates the mTOR pathway, which is required for the translation of these mRNAs. An inhibitory synergistic effect in PDAC cell lines, including patient-derived xenografts and tumor-derived organoids, was observed when N6L was combined with mTOR inhibitors. In conclusion, N6L reduces pancreatic cells proliferation, which then undergoes translational reprogramming through activation of the mTOR pathway. N6L and mTOR inhibitors act synergistically to inhibit the proliferation of PDAC and human PDX cell lines. This combotherapy of N6L and mTOR inhibitors could constitute a promising alternative to treat pancreatic cancer.

6.
NAR Cancer ; 3(3): zcab032, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34409299

RESUMO

5-Fluorouracil (5-FU) is a chemotherapeutic drug widely used to treat patients with solid tumours, such as colorectal and pancreatic cancers. Colorectal cancer (CRC) is the second leading cause of cancer-related death and half of patients experience tumour recurrence. Used for over 60 years, 5-FU was long thought to exert its cytotoxic effects by altering DNA metabolism. However, 5-FU mode of action is more complex than previously anticipated since 5-FU is an extrinsic source of RNA modifications through its ability to be incorporated into most classes of RNA. In particular, a recent report highlighted that, by its integration into the most abundant RNA, namely ribosomal RNA (rRNA), 5-FU creates fluorinated active ribosomes and induces translational reprogramming. Here, we review the historical knowledge of 5-FU mode of action and discuss progress in the field of 5-FU-induced RNA modifications. The case of rRNA, the essential component of ribosome and translational activity, and the plasticity of which was recently associated with cancer, is highlighted. We propose that translational reprogramming, induced by 5-FU integration in ribosomes, contributes to 5-FU-driven cell plasticity and ultimately to relapse.

7.
Cancers (Basel) ; 13(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203710

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and resistant cancer with no available effective therapy. We have previously demonstrated that nucleolin targeting by N6L impairs tumor growth and normalizes tumor vessels in PDAC mouse models. Here, we investigated new pathways that are regulated by nucleolin in PDAC. We found that N6L and nucleolin interact with ß-catenin. We found that the Wnt/ß-catenin pathway is activated in PDAC and is necessary for tumor-derived 3D growth. N6L and nucleolin loss of function induced by siRNA inhibited Wnt pathway activation by preventing ß-catenin stabilization in PDAC cells. N6L also inhibited the growth and the activation of the Wnt/ß-catenin pathway in vivo in mice and in 3D cultures derived from MIA PaCa2 tumors. On the other hand, nucleolin overexpression increased ß-catenin stabilization. In conclusion, in this study, we identified ß-catenin as a new nucleolin interactor and suggest that the Wnt/ß-catenin pathway could be a new target of the nucleolin antagonist N6L in PDAC.

8.
Cell Rep ; 33(12): 108517, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33357426

RESUMO

The chromatin protein positive coactivator 4 (PC4) has multiple functions, including chromatin compaction. However, its role in immune cells is largely unknown. We show that PC4 orchestrates chromatin structure and gene expression in mature B cells. B-cell-specific PC4-deficient mice show impaired production of antibody upon antigen stimulation. The PC4 complex purified from B cells contains the transcription factors (TFs) IKAROS and IRF4. IKAROS protein is reduced in PC4-deficient mature B cells, resulting in de-repression of their target genes in part by diminished interactions with gene-silencing components. Upon activation, the amount of IRF4 protein is not increased in PC4-deficient B cells, resulting in reduction of plasma cells. Importantly, IRF4 reciprocally induces PC4 expression via a super-enhancer. PC4 knockdown in human B cell lymphoma and myeloma cells reduces IKAROS protein as an anticancer drug, lenalidomide. Our findings establish PC4 as a chromatin regulator of B cells and a possible therapeutic target adjoining IKAROS in B cell malignancies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição Ikaros/metabolismo , Fatores Reguladores de Interferon/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Transgênicos
9.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105692

RESUMO

We describe here the evaluation of the cytotoxic efficacy of two platinum (II) complexes bearing an N-heterocyclic carbene (NHC) ligand, a pyridine ligand and bromide or iodide ligands on a panel of human metastatic cutaneous melanoma cell lines representing different genetic subsets including BRAF-inhibitor-resistant cell lines, namely A375, SK-MEL-28, MeWo, HMCB, A375-R, SK-MEL-5-R and 501MEL-R. Cisplatin and dacarbazine were also studied for comparison purposes. Remarkably, the iodine-labelled Pt-NHC complex strongly inhibited proliferation of all tested melanoma cells after 1-h exposure, likely due to its rapid uptake by melanoma cells. The mechanism of this inhibitory activity involves the formation of DNA double-strand breaks and apoptosis. Considering the intrinsic chemoresistance of metastatic melanoma cells of current systemic treatments, these findings are promising and could give research opportunities in the future to improve the prognosis of patients suffering from unresectable metastatic melanoma that are not eligible or that do not respond to the most effective drugs available to date, namely BRAF inhibitors and the anti-PD-1 monoclonal antibody (mAb).


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacocinética , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Melanoma/patologia , Metano/análogos & derivados , Metano/química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacocinética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Proteína bcl-X/metabolismo
10.
Cells ; 9(11)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120992

RESUMO

Many studies have focused on understanding the regulation and functions of aberrant protein synthesis in colorectal cancer (CRC), leaving the ribosome, its main effector, relatively underappreciated in CRC. The production of functional ribosomes is initiated in the nucleolus, requires coordinated ribosomal RNA (rRNA) processing and ribosomal protein (RP) assembly, and is frequently hyperactivated to support the needs in protein synthesis essential to withstand unremitting cancer cell growth. This elevated ribosome production in cancer cells includes a strong alteration of ribosome biogenesis homeostasis that represents one of the hallmarks of cancer cells. None of the ribosome production steps escape this cancer-specific dysregulation. This review summarizes the early and late steps of ribosome biogenesis dysregulations described in CRC cell lines, intestinal organoids, CRC stem cells and mouse models, and their possible clinical implications. We highlight how this cancer-related ribosome biogenesis, both at quantitative and qualitative levels, can lead to the synthesis of ribosomes favoring the translation of mRNAs encoding hyperproliferative and survival factors. We also discuss whether cancer-related ribosome biogenesis is a mere consequence of cancer progression or is a causal factor in CRC, and how altered ribosome biogenesis pathways can represent effective targets to kill CRC cells. The association between exacerbated CRC cell growth and alteration of specific steps of ribosome biogenesis is highlighted as a key driver of tumorigenesis, providing promising perspectives for the implementation of predictive biomarkers and the development of new therapeutic drugs.


Assuntos
Neoplasias Colorretais/metabolismo , Biogênese de Organelas , Ribossomos/metabolismo , Animais , Neoplasias Colorretais/genética , Genes Supressores de Tumor , Humanos , Modelos Biológicos , RNA Ribossômico/biossíntese
11.
Cells ; 9(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365743

RESUMO

MacroH2A histone variants have functions in differentiation, somatic cell reprogramming and cancer. However, at present, it is not clear how macroH2As affect gene regulation to exert these functions. We have parted from the initial observation that loss of total macroH2A1 led to a change in the morphology of murine myotubes differentiated ex vivo. The fusion of myoblasts to myotubes is a key process in embryonic myogenesis and highly relevant for muscle regeneration after acute or chronic injury. We have focused on this physiological process, to investigate the functions of the two splice isoforms of macroH2A1. Individual perturbation of the two isoforms in myotubes forming in vitro from myogenic C2C12 cells showed an opposing phenotype, with macroH2A1.1 enhancing, and macroH2A1.2 reducing, fusion. Differential regulation of a subset of fusion-related genes encoding components of the extracellular matrix and cell surface receptors for adhesion correlated with these phenotypes. We describe, for the first time, splice isoform-specific phenotypes for the histone variant macroH2A1 in a physiologic process and provide evidence for a novel underlying molecular mechanism of gene regulation.


Assuntos
Histonas/genética , Desenvolvimento Muscular/genética , Animais , Adesão Celular/genética , Diferenciação Celular/genética , Fusão Celular/métodos , Linhagem Celular , Cromatina/genética , Matriz Extracelular/metabolismo , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/fisiologia , Mioblastos/metabolismo , Isoformas de Proteínas/metabolismo
12.
Sci Rep ; 9(1): 17967, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784555

RESUMO

Direct stochastic optical reconstruction microscopy (dSTORM), developed in the last decade, has revolutionised optical microscopy by enabling scientists to visualise objects beyond the resolution provided by conventional microscopy (200 nm). We developed an innovative method based on blinking particle standards and conditions for long-lived imaging over several weeks. Stable localisation precisions within the 10 nm-range were achieved for single virions and in cellulo 2D imaging of centrosomes, as well as their reliable reconstruction in 3D dSTORM.

13.
Nanomedicine ; 21: 102060, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31336175

RESUMO

G-rich oligonucleotide, AS1411, has been shown to interact with nucleolin and to inhibit cancer cell proliferation and tumor growth. This antiproliferative action is increased when AS1411 is conjugated to different types of nanoparticles. However, the molecular mechanisms are not known. In this work, we show in several cell lines that optimized AS1411-conjugated gold nanoparticles (GNS-AS1411) inhibit nucleolin expression at the RNA and protein levels. We observed an alteration of the nucleolar structure with a decrease of ribosomal RNA accumulation comparable to what is observed upon nucleolin knock down. However, the expression of genes involved in cell cycle and the cell cycle blockage by GNS-AS1411 are not regulated in the same way as that in cells where nucleolin has been knocked down. These data suggest that the anti-proliferative activity of GNS-AS1411 is not the only consequence of nucleolin targeting and down-regulation.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ouro , Nanopartículas Metálicas/química , Oligodesoxirribonucleotídeos , Fosfoproteínas/biossíntese , RNA Ribossômico/biossíntese , Proteínas de Ligação a RNA/biossíntese , Aptâmeros de Nucleotídeos , Linhagem Celular Tumoral , Ouro/química , Ouro/farmacologia , Humanos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia
14.
Cancers (Basel) ; 10(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30360377

RESUMO

Background: Nucleolin (NCL) is a multifunctional protein with oncogenic properties. Anti-NCL drugs show strong cytotoxic effects, including in triple-negative breast cancer (TNBC) models, and are currently being evaluated in phase II clinical trials. However, few studies have investigated the clinical value of NCL and whether NCL stratified cancer patients. Here, we have investigated for the first time the association of NCL with clinical characteristics in breast cancers independently of the different subtypes. Methods: Using two independent series (n = 216; n = 661), we evaluated the prognostic value of NCL in non-metastatic breast cancers using univariate and/or multivariate Cox-regression analyses. Results: We reported that NCL mRNA expression levels are markers of poor survivals independently of tumour size and lymph node invasion status (n = 216). In addition, an association of NCL expression levels with poor survival was observed in TNBC (n = 40, overall survival (OS) p = 0.0287, disease-free survival (DFS) p = 0.0194). Transcriptomic analyses issued from The Cancer Genome Atlas (TCGA) database (n = 661) revealed that breast tumours expressing either low or high NCL mRNA expression levels exhibit different gene expression profiles. These data suggest that tumours expressing high NCL mRNA levels are different from those expressing low NCL mRNA levels. Conclusions: NCL is an independent marker of prognosis in breast cancers. We anticipated that anti-NCL is a promising therapeutic strategy that could rapidly be evaluated in high NCL-expressing tumours to improve breast cancer management.

15.
Adv Protein Chem Struct Biol ; 111: 133-164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29459030

RESUMO

Discovered in 1973, nucleolin is one of the most abundant phosphoproteins of the nucleolus. The ability of nucleolin to be involved in many cellular processes is probably related to its structural organization and its capability to form many different interactions with other proteins. Many functions of nucleolin affect cellular processes involved in oncogenesis-for instance: in ribosome biogenesis; in DNA repair, remodeling, and genome stability; in cell division and cell survival; in chemokine and growth factor signaling pathways; in angiogenesis and lymphangiogenesis; in epithelial-mesenchymal transition; and in stemness. In this review, we will describe the different functions of nucleolin in oncogenesis through its interaction with other proteins.


Assuntos
Neoplasias/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Animais , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Conformação Proteica , Proteínas de Ligação a RNA/metabolismo
16.
Nat Struct Mol Biol ; 24(11): 902-910, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28991266

RESUMO

Histone variants are structural components of eukaryotic chromatin that can replace replication-coupled histones in the nucleosome. The histone variant macroH2A1.1 contains a macrodomain capable of binding NAD+-derived metabolites. Here we report that macroH2A1.1 is rapidly induced during myogenic differentiation through a switch in alternative splicing, and that myotubes that lack macroH2A1.1 have a defect in mitochondrial respiratory capacity. We found that the metabolite-binding macrodomain was essential for sustained optimal mitochondrial function but dispensable for gene regulation. Through direct binding, macroH2A1.1 inhibits basal poly-ADP ribose polymerase 1 (PARP-1) activity and thus reduces nuclear NAD+ consumption. The resultant accumulation of the NAD+ precursor NMN allows for maintenance of mitochondrial NAD+ pools that are critical for respiration. Our data indicate that macroH2A1.1-containing chromatin regulates mitochondrial respiration by limiting nuclear NAD+ consumption and establishing a buffer of NAD+ precursors in differentiated cells.


Assuntos
Núcleo Celular/metabolismo , Respiração Celular , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Mitocôndrias/metabolismo , Desenvolvimento Muscular , NAD/metabolismo , Animais , Camundongos/embriologia
17.
Sci Rep ; 7(1): 10513, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874822

RESUMO

In the present study, a sensitive and selective signal-on method for aptamer based spectrofluorometric detection of cancer cells is introduced. AS1411, a nucleolin aptamer, is wrapped around water-soluble carbon dots and used as a probe for the detection of several types of cancer cells. Nucleolin, is overexpressed on the surface of cancer cells. Mouse breast 4T1, human breast MCF7, and human cervical HeLa cancer cells were selected as target cells, while human foreskin fibroblast cells HFFF-PI6 served as control cells. For the sensitive and selective spectrofluorimetric detection of target cancer cells in the presence of control cells, the cells were incubated in carbon dots-aptamer solutions, the cell suspensions were subsequently centrifuged and the fluorescence intensities were measured as an analytical signal. The specific targeting of cancer cells by AS1411 aptamers causes the release of carbon dots and enhances the fluorescence intensity. A calibration curve with a dynamic range between 10-4500 4T1 cells and detectability of roughly 7 cells was obtained. In addition, no significant change in the signal was detected by modifying the amount of human foreskin fibroblast control cells. Our results demonstrate similar responses to human MCF7 breast and cervical HeLa cancer cells.


Assuntos
Aptâmeros de Nucleotídeos , Carbono , Nanoconjugados , Oligodesoxirribonucleotídeos , Espectrometria de Fluorescência , Animais , Carbono/química , Linhagem Celular Tumoral , Imunofluorescência , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Nanoconjugados/química , Oligodesoxirribonucleotídeos/química , Espectrometria de Fluorescência/métodos
18.
Sci Rep ; 7(1): 9017, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827664

RESUMO

Nucleolin is an essential protein that plays important roles in the regulation of cell cycle and cell proliferation. Its expression is up regulated in many cancer cells but its molecular functions are not well characterized. Nucleolin is present in the nucleus where it regulates gene expression at the transcriptional and post-transcriptional levels. Using HeLa cells depleted in nucleolin we performed an mRNA and miRNA transcriptomics analysis to identify biological pathways involving nucleolin. Bioinformatic analysis strongly points to a role of nucleolin in lipid metabolism, and in many signaling pathways. Down regulation of nucleolin is associated with lower level of cholesterol while the amount of fatty acids is increased. This could be explained by the decreased and mis-localized expression of the transcription factor SREBP1 and the down-regulation of enzymes involved in the beta-oxidation and degradation of fatty acids. Functional classification of the miRNA-mRNA target genes revealed that deregulated miRNAs target genes involved in apoptosis, proliferation and signaling pathways. Several of these deregulated miRNAs have been shown to control lipid metabolism. This integrated transcriptomic analysis uncovers new unexpected roles for nucleolin in metabolic regulation and signaling pathways paving the way to better understand the global function of nucleolin within the cell.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs/análise , Fosfoproteínas/metabolismo , RNA Mensageiro/análise , Proteínas de Ligação a RNA/metabolismo , Biologia Computacional , Regulação da Expressão Gênica , Células HeLa , Humanos , Metabolismo dos Lipídeos , MicroRNAs/genética , RNA Mensageiro/genética , Transdução de Sinais
20.
J Cell Sci ; 130(9): 1570-1582, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28283545

RESUMO

Genetic loss-of-function studies on development, cancer and somatic cell reprogramming have suggested that the group of macroH2A histone variants might function through stabilizing the differentiated state by a yet unknown mechanism. Here, we present results demonstrating that macroH2A variants have a major function in maintaining nuclear organization and heterochromatin architecture. Specifically, we find that a substantial amount of macroH2A is associated with heterochromatic repeat sequences. We further identify macroH2A on sites of interstitial heterochromatin decorated by histone H3 trimethylated on K9 (H3K9me3). Loss of macroH2A leads to major defects in nuclear organization, including reduced nuclear circularity, disruption of nucleoli and a global loss of dense heterochromatin. Domains formed by DNA repeat sequences are disorganized, expanded and fragmented, and mildly re-expressed when depleted of macroH2A. At the molecular level, we find that macroH2A is required for the interaction of repeat sequences with the nucleostructural protein lamin B1. Taken together, our results argue that a major function of macroH2A histone variants is to link nucleosome composition to higher-order chromatin architecture.


Assuntos
Heterocromatina/metabolismo , Histonas/metabolismo , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Células HEK293 , Células Hep G2 , Heterocromatina/ultraestrutura , Humanos , Lamina Tipo B/metabolismo , Lisina/metabolismo , Masculino , Metilação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...